
October 2002 www.stsc.hill.af.mil 19

Using Code Science®, an agile software
development methodology based on

eXtreme Programming (XP), we1 recently
delivered an application (code-named
Odyssey) consisting of 400,000-plus exe-
cutable source lines of code (ESLOC) to
one of the world’s premier industrial
automation companies. The application was
written in C++ by as many as 17 developers
(including some of our customer’s staff) in
approximately 15 months. We are geograph-
ically remote from this customer.

Odyssey was delivered a month and a half
ahead of schedule with a productivity rate of
43 ESLOC per coding hour. During the
project duration, approximately 2,400
defects were found and fixed, yielding a cap-
tured defect density of six defects per thou-
sand lines of code (KLOC). During a thor-
ough, more than six-week customer-con-
ducted acceptance test, only about 200
defects were found (none severe), yielding a
delivered defect density of 0.5/KLOC. The
customer is delighted with the product and is
confident of the competitive edge achieved.

The Application
The Odyssey program consists of two dis-
tinct but related scalable vector graphics
applications. The first is a run-time applica-
tion that issues real-time commands from a
touch screen panel to devices known as pro-
grammable logic controllers, which are used
in manufacturing assembly processes. The
second is a panel design application that
enables human-machine interface engineers
to develop the graphical equivalent of a
hardware panel made up of buttons, gauges,
and other control and monitoring devices.

Why Agile Methods
We began experimenting with XP several
years ago, and actually began our first XP
project a few months before Kent Beck pub-
lished his first book on the subject [1].
Before that time, we used several traditional
waterfall and rapid application design-based
methods. We were impressed at how quickly
our first XP project was completed.

In a side-by-side comparison of XP and
waterfall on the very same project, the XP
team delivered their final product when the
other team was less than 50 percent com-
plete. Since then, we refined our initial XP
approach to encompass successive refine-
ments that became known as Code Science.

Code Science is largely based on the
twelve tenets of XP. These are as follows:
1. Customer at the Center of the Project.

The customer is treated as a full-fledged
member of the development team with
access to all the information that the rest
of the team is privy to (e.g., defect logs,
issue lists, etc.).

2. Small Releases. Simple releases are put
into production early and updated fre-
quently on a very short cycle (two to
three days). New versions are released at
the end of each iteration (three to five
weeks).

3. Simple Design. A program built with XP
should be the simplest program that
meets the current requirements.

4. Relentless Testing. XP teams focus on
validation of the software at all times.
Programmers develop software by writ-
ing tests first followed by software that
fulfills the requirements reflected in the
tests. Customers provide acceptance
tests that enable them to be certain that

the features they need are provided.
5. Refactoring. The system design is

improved throughout the entire develop-
ment process. This is done by keeping
the software clean, without duplication,
as simple as possible, and yet complete –
ready for any change that comes along.
(Martin Fowler defines refactoring as
“the process of changing a software sys-
tem in such a way that it does not alter
the external behavior of the code yet
improves its internal structure” [2]).

6. Pair Programming. XP programmers
write all production code in pairs: Two
programmers work together at one
machine.

7. Collective Ownership. All the code
belongs to the all the programmers. This
enables the team to work at full speed.
When something needs changing, it can
be changed without delay. It is important
to note that an effective configuration
management discipline is an important
enabler of this practice.

8. Continuous Integration. The software
system is integrated and built multiple
times per day (ideally, every time a task is
finished). Continual regression testing
prevents functional regressions when
requirements change. This also keeps the
programmers on the same page and
enables very rapid progress.

9. 40-Hour Workweek. Tired programmers
make more mistakes. XP teams do not
work excessive overtime, which keeps
them fresh, healthy, and effective.

10. On-Site Customer. An XP project is
steered by a dedicated individual who is
empowered to determine requirements,
set priorities, and answer questions.

11. Coding Standards. For a team to work
effectively in pairs and to share owner-
ship of all the code, programmers need
to write the code in the same way with
rules that ensure the code communicates
clearly.

12. Metaphor. Development is guided with a

Odyssey and Other Code Science Success Stories

John Manzo
AgileTek L.L.C.

Code Science® is an agile software development method based on eXtreme Programming (XP). This article describes the suc-
cess achieved using code science to develop a complex industrial automation application. With a brief review of XP as back-
ground, code science is described in terms of refinements made to XP in applying it to a wide variety of application domains
and industries over a period of almost four years. Included are real-world insights from the developers’ experience in applying
this agile development method, concluding with a quantitative measure of the effectiveness of XP since its inception almost
four years ago.

“In a side-by-side
comparison of XP and
waterfall on the very
same project, the XP

team delivered their final
product when the other
team was less than 50

percent complete.”

® Code Science is registered in the U.S. Patent and Trademark
Office.

Agile Software Development

20 CROSSTALK The Journal of Defense Software Engineering October 2002

simple shared story of how the overall
system works. XP was originally used to
develop a payroll program at Chrysler
Corporation [3]. The team used the
metaphor of an assembly line to describe
the process of building a payroll check.
The key tenet in XP is iterative develop-

ment and the unforgiving honesty of work-
ing code. The concept of iterative develop-
ment has been around for a long time.
However, XP does have some limitations
such as scaling – the ability to add large
numbers of developers to a project that
requires them. (Most XP practitioners con-
sider six to 12 developers to be the practical
limit.) It was necessary to modify XP to
develop a methodology that would work on
large projects, across multiple application
domains, and for clients with diverse and
sometimes very specialized needs, for exam-
ple, regulatory environments such as the
Food and Drug Administration (FDA),
where there is a strong need for extensive
documentation.

The Code Science Difference
A way to quickly understand Code Science is
to think of it as XP with a delta (a set of dif-
ferences). Some of the differences are addi-
tive (+), some are subtractive (-) and some
are simply modifications or refinements (�).
Following are a set of differences defined.

+ Business Process Analysis
In employing XP there is an implicit
assumption that the client basically knows
what it wants and, therefore, the require-
ments gathering process can begin with user
stories. Although this is often the case, many
of our clients need to focus and solidify their
ideas and, most importantly, determine with
clarity what they need rather than what they
want. To accomplish this, we developed a
process that helps bring focus and under-
standing to the client’s business needs, prior-
itizing features and functions in terms of the
business value they represent. This first step,
which is formally absent from XP, is a step
we can take when necessary to ensure that the
story-gathering effort produces stories based
on a real vs. perceived need.

+ Delphi Estimation
The Delphi method of estimating involves
three or more participants who discuss the
work and provide anonymous estimates of
the time for completion (usually in units of
perfect programmer hours – i.e., an ideal, no
interruption, period of time). These esti-
mates are tallied and a mean and standard
deviation is made known to the participants.
Discussion ensues among the participants as
to the differences in the estimates (which
remain anonymous). This continues for suc-

cessive rounds (usually three) until the stan-
dard deviation (a measure of uncertainty) is
made sufficiently narrow. Once the number
of perfect programmer hours is known, a
loading factor is applied to convert this esti-
mate to real programmer hours.

+ Componentized Architecture
For complex systems, it is especially impor-
tant to assure conceptual integrity in the final
product. Also, because complex systems can
be large, it is also important to enable the
system to be developed in an environment
of distributed ownership. Among the least
understood areas of XP is the notion of
design-as-you-go through refactoring. To some,
especially those who equate design and
architecture, this means no up-front archi-
tecture, and, by implication, any architecture
that the delivered system may have is a de-
facto one at best.

Architecture of a system simply means
identifying the constituent components of
the system and defining the interrelation-
ship(s) between them. The best architectures
are isomorphic (one-to-one) mappings
between problem and program space. This
ensures that a system’s underlying structure
and components mirror the problem being
solved. This means that for the program to
change requires that the problem changes and,
therefore, you are change-proofing your pro-
gram. While there may be more efficient
ways to solve a problem (e.g., creating one
module to perform similar functions by
invoking it in a context sensitive way), this
efficiency will almost always come at the
expense of time spent debugging and later
modifying the program if one or more of
the functions change.

However, it also means something more.
By defining the relationships between the
various components, one has gone most of
the way toward establishing agreements for
the interfaces. The power of interface agree-
ments is that they serve as restrictive libera-
tors. In other words, the individuals working
on various system components are free to
design the internals of those components
without regard for potential untoward
effects on the rest of the system – so long as
the interface agreements are honored.

By spending a relatively small amount of
time up front, one can ensure both a prod-
uct with conceptual integrity and a project
that can scale.

+ Automated Contract and
Regression Testing
Given that XP is premised upon the need to
embrace change, making it easy to perform
regression testing is an important part of
any XP project. We have taken this to the
next level by implementing the capability to
perform contract testing, which checks for
the existence of predefined pre-conditions,
post-conditions and class invariants. (As an
example, an overdrawn flag in your checking
account is invalid if there is a positive bal-
ance remaining after the last transaction.)

+ Story Actors
We have added to the notion of stories the
concept of story actors. Actors are personifi-
cations of the various categories of users the
system will encounter. Thinking of the
requirements in terms of actors brings the
requirements to life as well as unmasks
nuances that would otherwise remain invisi-
ble to both the developers and the customer.

+ Wall Gantts
Frequently used in project management, a
Gantt chart provides a graphical illustration
of a schedule that helps to plan, coordinate,
and track specific tasks in a project. We have
taken the concept one step further and
adapted it to agile methods by creating a
physical construct using twine, pushpins,
and index cards. The twine is used to create
a line on a wall. Tasks, written on cards, are
folded in half and hung on the line (one line
for each project participant). Index cards
with dates (one for each day of an iteration,
which usually lasts three to five weeks) are
pinned across the top of the chart.

Physically constructing the Gantt chart
makes it very easy to move tasks around,
drive out dependencies, and load balance.
Because the chart is wall size, it is easy for
the team to stand around the chart to discuss
the state of the project in near real-time
(each day starts with a stand-up meeting).
The wall Gantt also provides clear owner-
ship for development efforts, encourages
accountability, and serves as the team’s war
room and center of the project universe.

+ Automatic Document Generation
Through a tool we have built called Doc-It
(similar to JavaDoc), we are able to reduce
the burden and streamline the process of
generating documentation that describes the
inner workings of the code. Experience
shows that it is a poor practice to separate

“The best architectures
are isomorphic

(one-on-one) mappings
between problem and

program space.”

Odyssey and Other Code Science Success Stories

October 2002 www.stsc.hill.af.mil 21

documentation from the code that it
describes. Updating source code documenta-
tion is difficult enough, but once the docu-
mentation is separated from the code, it is
“out of sight, out of mind.” To deal with
this, a programmer simply needs to tag a
comment in the source code and Doc-It cre-
ates automatic HTML Application Program
Interface documentation with every build.

Doc-It traverses source code directories,
creating a navigable hierarchy (directory,
class, method) and creates a Web page for
each source file. This makes the documenta-
tion easily accessible to new and existing
team members. It also makes the documen-
tation easily accessible to clients during co-
development or during knowledge transfer
phases.

� Pair Programming
Although our experience proves pair pro-
gramming to be extremely effective, for
many routine programming tasks, pair pro-
gramming has not shown itself to be cost
effective. On the other hand, for anything
either algorithmically or logically complex,
pair programming is a must. The default is to
program in pairs, but the team gets to decide
which modules will be coded solo.

- 40-Hour Workweek
While we strive to provide the highest quali-
ty of life for all our staff members, it is unre-
alistic to expect that our client’s time-critical
requirements will not sometimes necessitate
sustained periods of activity. Treating a 40-
hour workweek as a hard requirement is
often impractical.

- Metaphor
Metaphor is not included in Code Science.
While we concede that it has benefits, so far
we have not found a need to incorporate the
use of metaphor in our methodology.

+ Flexibility to Meet
Client’s Special Needs
Some of our clients have special needs that
are not accounted for by pure XP (e.g., in
highly regulated environments such as bio-
medicine, the FDA requires specialized doc-
umentation and traceability for certain types
of software). Code Science eliminates this
XP limitation by incorporating a special needs
provision in our methodology.

Application to Odyssey
Code Science is used on all Geneer software
development projects. The Odyssey project
was no exception. However, no two projects
are the same. Each emphasizes certain of
the specific tenets described above to differ-
ing degrees. In the interest of brevity, we

describe some of our developers’ more
salient experiences and insights in applying
these tenets.

The Customer Is
at the Center
XP talks about having the customer on-site.
While this is ideal, our experience in using
XP/Code Science over the last four years is
that it is seldom practical unless your cus-
tomer is internal. In the case of Odyssey, the
customer was located hundreds of miles
away.

More important than physical location,
however, is putting the customer at the cen-
ter of your project as described earlier. In an
XP/Code Science project, there is no
attempt to hide information from the cus-
tomer. While we did not insist the customer
be physically in our facility, we did request
that they be present during iteration plan-
ning, periods of critical knowledge transfer,
or to approve test plans and validate their
results – usually at the beginning/end of
iteration. When this was impractical, or for
routine communications, we used e-mail,
conference calls, WebEx sessions, or video-
conference. With active customer participa-
tion, the resulting product can be everything
that the customer expects it to be.

Refactoring
Refactoring does not mean re-working. Do
not partially write a feature with the intent of
refactoring to get it complete later. Keep the
changes simple, but keep them atomically
complete.

Pair Programming
Pair programming was especially useful in
ramping up a new staff member. It was also
quite useful for chasing down complex
defects. For simple modules, the team found
it more expedient to use the white board in
pairs for 15 minutes, then program solo.

Continuous Integration
The team performed builds at least daily,
more often, two or three times a day. With a
good automated build program, you cannot
build too often. Our builds are generated
with a custom, home-grown application that
creates builds at 4 a.m. and again at 3 p.m.
This gives the team a fresh build every
morning and also one to work on in the
afternoon. Besides performing the physical
build, we are also informed if the build is
broken (e.g., cannot compile because of a
syntax problem, or a configuration manage-
ment issue – checked in one file and not
another, etc.).

40-Hour Week
During a long period of peak activity, the

team found it helpful to make their work
environment homier. By making their work-
place a more dorm-like environment, they
significantly eased the stress of the long,
often intense, workdays and nights.

Componetized Architecture
A high-level architecture was defined at the
beginning of the first iteration, and as more
information became available, more detail
was added to successive iterations. Team
leads would spend perhaps two days with
their teams using white boards for a four to
six-week iteration. We found that the biggest
mistake one can make here is to attempt to
get too detailed about something for which
there is insufficient information.

Story Actors
Because most of the team never worked on
an industrial automation application, actors
helped the team get familiar with the client’s
domain. When the team took a field trip,
they could identify the user types by their
actor names (representative of their role-
play, more than their job title). It helped the
team understand the business and how the
product would be used in stories. The
requirements were written in terms of how
the system would be used, vs. desired func-
tions. By associating who is doing what, it
helps conceptualize and compartmentalize
the functions.

Wall Gantts
Wall Gantts make load balancing easy and
kept the project on track. The whole team
sees the actual size of the function based on
the task cards and there is great satisfaction
in putting completion stickers on each card.
An extremely useful management tool, Wall
Gantts also helped to reveal issues and
expose risks.

Large Team Experience
Although the overall team was divided into
subteams, stand-up meetings were typically
with the entire team. Team leads summarize
and add detail with other team members as
needed. As tasks are completed, people can
move from one team to another.

Conclusion
During a period of almost four years,
XP/Code Science has been employed on 14
projects across a wide variety of application
domains and industries such as aerospace,
telecommunications, banking and finance,
pharmaceuticals, consumer goods, and even
pari-mutuels. These projects ranged in size
from 10 KLOCs for a Personal Data
Assistant client, to more than 400 KLOCs

CONTINUED ON PAGE 30

for the industrial automation project
described herein. The languages were most-
ly C++ but also included C, HTML, VB, and
SQL. Productivity ranged from a low of 21
to a high of 48 lines of code per coding
hour, averaging 35 lines of code per coding
hour.

Compared to projects conducted before
adopting this intensely practical and agile
software development discipline, our cost
per line of code and defect rates were dras-
tically reduced while our development veloc-
ity was significantly increased. Our most
recent audit revealed an overall average pro-
ductivity index of 22 [4]. This index is a
management scale corresponding to the
overall process productivity achieved by an
organization during the main software build.
An index of 25 is considered among the
highest ever recorded.◆

References
1. Beck, Kent. eXtreme Programming

Explained: Embrace Change. Boston:
Addison-Wesley, 1999.

2. Fowler, Martin, et. al. Refactoring:
Improving the Design Of Existing

Code. Boston: Addison-Wesley, 1999.
3. C3 Team. “Chrysler Goes to Extremes.”

Distributed Computing. Oct. 1998
<www.xprogramming.com/public
ations/distributed-computing .html>.

4. Putnam, Lawrence H., and Ware Myers.
Measures of Excellence: Reliable

Software on Time, Within Budget.
Upper Saddle River: Prentice Hall/Your-
don Press, 1992.

Note
1. “We” as mentioned throughout this arti-

cle refers to the Geneer company.

30 CROSSTALK The Journal of Defense Software Engineering October 2002

About the Author
John Manzo has spent
more than three decades
of his career in software
engineering, and has
contributed to and made
significant accomplish-

ments in the development of software,
computer, and telecommunications
solutions. Manzo comes to AgileTek
from Geneer where he was chief tech-
nology officer, and brings with him a
legacy of broad and deep experience in
agile development methods. Earlier in
his career, Manzo was recognized for
his development of the Fire Control
software for the Navy's highly success-

ful AEGIS system – one of the largest
and most complex software develop-
ments ever delivered to the Department
of Defense. He has served as a repre-
sentative to the President's National
Science Advisory Board, and served as
an adjunct faculty member of Harvard
University where he developed, and for
several years taught, “The Management
of Software Engineering.”

AgileTek
934 South Golf Cul de Sac
Des Plaines, IL 60016
Phone: (847) 840-3765
Fax: (847) 376-8308
E-mail: jmanzo@agiletek.com

CONTINUED FROM PAGE 21

Agile software development techniques are an effective response to many problems still plaguing development projects. Although
there are a number of issues to consider, almost any project can become more agile to its benefit. What exactly does it mean
to be more agile? Words like predictable, cost-effective, and mature are more often used to characterize desirable software devel-
opment processes. Agile development has come into focus recently due to the popularity of its most widely known interpreta-
tion, eXtreme Programming, but some of its foundations go back as far as 20 years. This article addresses some of the ques-
tions about agile: What is agile? Who needs to be agile? How can any project not creating small business applications seri-
ously consider agile development? Is agile development an “all or nothing” proposition?

Online Articles

Should You Be More Agile?
Rich McCabe and Michael Pollen

Software Productivity Consortium

Agile Development: Weed or Wildflower?1

David Kane
SRA International

Steve Ornburn
GBC Group, Inc.

Editor’s Note: Due to space constraints, CrossTalk was not able to publish these articles in their entirety. However, they can be
viewed in this month’s issue on our Web site at <www.stsc.hill.af.mil/crosstalk> along with back issues of CrossTalk.

The Software Engineering Institute’s Capability Maturity Model® (CMM®) has been a major force for software process and
acquisition improvement in the federal government’s civil and defense communities for the past decade. Major investments have
been made by the government, their contractors, and many other organizations to make software development more consistent
and reliable. The CMM provided an alternative to the cowboy programmer archetype. Amid this backdrop of progress, a new
trend in software development has emerged – agile development, which aims to build software faster and more flexibly than tra-
ditional approaches. Agile values “individuals and interactions over processes and tools” [1]. For organizations that have
invested in a CMM, do agile methods represent the rebirth of the cowboy – a weed to be stamped out? Or, are agile methods
a reasonable way to build software in a world in which needs are changing at an ever-increasing pace – a wildflower to be nur-
tured? This article looks at whether there is a home for agile methods in communities that have have embraced the CMM.

